Jump to content

Hi!


Recommended Posts

[quote name='Buenosan' timestamp='1365400210' post='272443']
and learn a lot from you guys!
[/quote]

A nebula is an interstellar cloud of dust, hydrogen, helium and other ionized gases. Originally, nebula was a name for any diffuse astronomical object, including galaxies beyond the Milky Way. The Andromeda Galaxy, for instance, was referred to as the Andromeda Nebula (and spiral galaxies in general as "spiral nebulae") before the true nature of galaxies was confirmed in the early 20th century by Vesto Slipher, Edwin Hubble, et. al. Nebulae are often star-forming regions, such as in the Eagle Nebula. This nebula is depicted in one of NASA's most famous images, the "Pillars of Creation". In these regions the formations of gas, dust, and other materials "clump" together to form larger masses, which attract further matter, and eventually will become massive enough to form stars. The remaining materials are then believed to form planets, and other planetary system objects.


Around AD 150, Claudius Ptolemaeus (Ptolemy) recorded, in books VII-VIII of his Almagest, five stars that appeared nebulous. He also noted a region of nebulosity between the constellations Ursa Major and Leo that was not associated with any star. The first true nebula, as distinct from a star cluster, was mentioned by the Persian/Muslim astronomer, Abd al-Rahman al-Sufi, in his Book of Fixed Stars (964). He noted "a little cloud" where the Andromeda Galaxy is located.He also cataloged the Omicron Velorum star cluster as a "nebulous star" and other nebulous objects, such as Brocchi's Cluster. The supernova that created the Crab Nebula, the SN 1054, was observed by Arabic and Chinese astronomers in 1054.
On November 26, 1610, Nicolas-Claude Fabri de Peiresc discovered the Orion Nebula using a telescope. This nebula was also observed by Johann Baptist Cysat in 1618. However, the first detailed study of the Orion Nebula wouldn't be performed until 1659 by Christian Huygens, who also believed himself to be the first person to discover this nebulosity.
In 1715, Edmund Halley published a list of six nebulae. This number steadily increased during the century, with Jean-Philippe de Cheseaux compiling a list of 20 (including eight not previously known) in 1746. From 1751–53, Nicolas Louis de Lacaille cataloged 42 nebulae from the Cape of Good Hope, with most of them being previously unknown. Charles Messier then compiled a catalog of 103 "nebulae" (now called Messier objects, which included what are now known to be galaxies) by 1781; his interest was detecting comets, and these were objects that might be mistaken for them, wasting time.
The number of nebulae was then greatly expanded by the efforts of William Herschel and his sister Caroline Herschel. Their Catalogue of One Thousand New Nebulae and Clusters of Stars was published in 1786. A second catalog of a thousand was published in 1789 and the third and final catalog of 510 appeared in 1802. During much of their work, William Herschel believed that these nebulae were merely unresolved clusters of stars. In 1790, however, he discovered a star surrounded by nebulosity and concluded that this was a true nebulosity, rather than a more distant cluster.
Beginning in 1864, William Huggins examined the spectra of about 70 nebulae. He found that roughly a third of them had the absorption spectra of a gas. The rest showed a continuous spectrum and thus were thought to consist of a mass of stars. A third category was added in 1912 when Vesto Slipher showed that the spectrum of the nebula that surrounded the star Merope matched the spectra of the Pleiades open cluster. Thus the nebula radiates by reflected star light.
In about 1922, following the Great Debate, it had become clear that many "nebulae" were in fact galaxies far from our own.
Slipher and Edwin Hubble continued to collect the spectra from many diffuse nebulae, finding 29 that showed emission spectra and 33 had the continuous spectra of star light. In 1922, Hubble announced that nearly all nebulae are associated with stars, and their illumination comes from star light. He also discovered that the emission spectrum nebulae are nearly always associated with stars having spectral classifications of B1 or hotter (including all O-type main sequence stars), while nebulae with continuous spectra appear with cooler stars. Both Hubble and Henry Norris Russell concluded that the nebulae surrounding the hotter stars are transformed in some manner.


Many nebulae or stars form from the gravitational collapse of gas in the interstellar medium or ISM. As the material collapses under its own weight, massive stars may form in the center, and their ultraviolet radiation ionizes the surrounding gas, making it visible at optical wavelengths. Examples of these types of nebulae are the Rosette Nebula and the Pelican Nebula. The size of these nebulae, known as HII regions, varies depending on the size of the original cloud of gas. New stars are formed in the nebulas. The formed stars are sometimes known as a young, loose cluster.
Some nebulae are formed as the result of supernova explosions, the death throes of massive, short-lived stars. The materials thrown off from the supernova explosion are ionized by the energy and the compact object that it can produce. One of the best examples of this is the Crab Nebula, in Taurus. The supernova event was recorded in the year 1054 and is labelled SN 1054. The compact object that was created after the explosion lies in the center of the Crab Nebula and is a neutron star.
Other nebulae may form as planetary nebulae. This is the final stage of a low-mass star's life, like Earth's Sun. Stars with a mass up to 8–10 solar masses evolve into red giants and slowly lose their outer layers during pulsations in their atmospheres. When a star has lost enough material, its temperature increases and the ultraviolet radiation it emits can ionize the surrounding nebula that it has thrown off. The nebula is almost 97% hydrogen and 3% helium, plus trace amounts of other elements.

Link to comment

[quote name='Fratley' timestamp='1365403252' post='272481']
[spoiler]A nebula is an interstellar cloud of dust, hydrogen, helium and other ionized gases. Originally, nebula was a name for any diffuse astronomical object, including galaxies beyond the Milky Way. The Andromeda Galaxy, for instance, was referred to as the Andromeda Nebula (and spiral galaxies in general as "spiral nebulae") before the true nature of galaxies was confirmed in the early 20th century by Vesto Slipher, Edwin Hubble, et. al. Nebulae are often star-forming regions, such as in the Eagle Nebula. This nebula is depicted in one of NASA's most famous images, the "Pillars of Creation". In these regions the formations of gas, dust, and other materials "clump" together to form larger masses, which attract further matter, and eventually will become massive enough to form stars. The remaining materials are then believed to form planets, and other planetary system objects.


Around AD 150, Claudius Ptolemaeus (Ptolemy) recorded, in books VII-VIII of his Almagest, five stars that appeared nebulous. He also noted a region of nebulosity between the constellations Ursa Major and Leo that was not associated with any star. The first true nebula, as distinct from a star cluster, was mentioned by the Persian/Muslim astronomer, Abd al-Rahman al-Sufi, in his Book of Fixed Stars (964). He noted "a little cloud" where the Andromeda Galaxy is located.He also cataloged the Omicron Velorum star cluster as a "nebulous star" and other nebulous objects, such as Brocchi's Cluster. The supernova that created the Crab Nebula, the SN 1054, was observed by Arabic and Chinese astronomers in 1054.
On November 26, 1610, Nicolas-Claude Fabri de Peiresc discovered the Orion Nebula using a telescope. This nebula was also observed by Johann Baptist Cysat in 1618. However, the first detailed study of the Orion Nebula wouldn't be performed until 1659 by Christian Huygens, who also believed himself to be the first person to discover this nebulosity.
In 1715, Edmund Halley published a list of six nebulae. This number steadily increased during the century, with Jean-Philippe de Cheseaux compiling a list of 20 (including eight not previously known) in 1746. From 1751–53, Nicolas Louis de Lacaille cataloged 42 nebulae from the Cape of Good Hope, with most of them being previously unknown. Charles Messier then compiled a catalog of 103 "nebulae" (now called Messier objects, which included what are now known to be galaxies) by 1781; his interest was detecting comets, and these were objects that might be mistaken for them, wasting time.
The number of nebulae was then greatly expanded by the efforts of William Herschel and his sister Caroline Herschel. Their Catalogue of One Thousand New Nebulae and Clusters of Stars was published in 1786. A second catalog of a thousand was published in 1789 and the third and final catalog of 510 appeared in 1802. During much of their work, William Herschel believed that these nebulae were merely unresolved clusters of stars. In 1790, however, he discovered a star surrounded by nebulosity and concluded that this was a true nebulosity, rather than a more distant cluster.
Beginning in 1864, William Huggins examined the spectra of about 70 nebulae. He found that roughly a third of them had the absorption spectra of a gas. The rest showed a continuous spectrum and thus were thought to consist of a mass of stars. A third category was added in 1912 when Vesto Slipher showed that the spectrum of the nebula that surrounded the star Merope matched the spectra of the Pleiades open cluster. Thus the nebula radiates by reflected star light.
In about 1922, following the Great Debate, it had become clear that many "nebulae" were in fact galaxies far from our own.
Slipher and Edwin Hubble continued to collect the spectra from many diffuse nebulae, finding 29 that showed emission spectra and 33 had the continuous spectra of star light. In 1922, Hubble announced that nearly all nebulae are associated with stars, and their illumination comes from star light. He also discovered that the emission spectrum nebulae are nearly always associated with stars having spectral classifications of B1 or hotter (including all O-type main sequence stars), while nebulae with continuous spectra appear with cooler stars. Both Hubble and Henry Norris Russell concluded that the nebulae surrounding the hotter stars are transformed in some manner.


Many nebulae or stars form from the gravitational collapse of gas in the interstellar medium or ISM. As the material collapses under its own weight, massive stars may form in the center, and their ultraviolet radiation ionizes the surrounding gas, making it visible at optical wavelengths. Examples of these types of nebulae are the Rosette Nebula and the Pelican Nebula. The size of these nebulae, known as HII regions, varies depending on the size of the original cloud of gas. New stars are formed in the nebulas. The formed stars are sometimes known as a young, loose cluster.
Some nebulae are formed as the result of supernova explosions, the death throes of massive, short-lived stars. The materials thrown off from the supernova explosion are ionized by the energy and the compact object that it can produce. One of the best examples of this is the Crab Nebula, in Taurus. The supernova event was recorded in the year 1054 and is labelled SN 1054. The compact object that was created after the explosion lies in the center of the Crab Nebula and is a neutron star.
Other nebulae may form as planetary nebulae. This is the final stage of a low-mass star's life, like Earth's Sun. Stars with a mass up to 8–10 solar masses evolve into red giants and slowly lose their outer layers during pulsations in their atmospheres. When a star has lost enough material, its temperature increases and the ultraviolet radiation it emits can ionize the surrounding nebula that it has thrown off. The nebula is almost 97% hydrogen and 3% helium, plus trace amounts of other elements.[/spoiler]
[/quote]Fratley pls.

Link to comment

[quote name='Akshit' timestamp='1365405018' post='272508']
Not a lot of people get troll messages in their Introduction thread,but you may take that as a good sign...and yeah Welcome !!!
[/quote]

I feel so loved already!
Hahaha, thank you. :)

Link to comment

[quote name='Fratley' timestamp='1365403252' post='272481']
[spoiler]A nebula is an interstellar cloud of dust, hydrogen, helium and other ionized gases. Originally, nebula was a name for any diffuse astronomical object, including galaxies beyond the Milky Way. The Andromeda Galaxy, for instance, was referred to as the Andromeda Nebula (and spiral galaxies in general as "spiral nebulae") before the true nature of galaxies was confirmed in the early 20th century by Vesto Slipher, Edwin Hubble, et. al. Nebulae are often star-forming regions, such as in the Eagle Nebula. This nebula is depicted in one of NASA's most famous images, the "Pillars of Creation". In these regions the formations of gas, dust, and other materials "clump" together to form larger masses, which attract further matter, and eventually will become massive enough to form stars. The remaining materials are then believed to form planets, and other planetary system objects.


Around AD 150, Claudius Ptolemaeus (Ptolemy) recorded, in books VII-VIII of his Almagest, five stars that appeared nebulous. He also noted a region of nebulosity between the constellations Ursa Major and Leo that was not associated with any star. The first true nebula, as distinct from a star cluster, was mentioned by the Persian/Muslim astronomer, Abd al-Rahman al-Sufi, in his Book of Fixed Stars (964). He noted "a little cloud" where the Andromeda Galaxy is located.He also cataloged the Omicron Velorum star cluster as a "nebulous star" and other nebulous objects, such as Brocchi's Cluster. The supernova that created the Crab Nebula, the SN 1054, was observed by Arabic and Chinese astronomers in 1054.
On November 26, 1610, Nicolas-Claude Fabri de Peiresc discovered the Orion Nebula using a telescope. This nebula was also observed by Johann Baptist Cysat in 1618. However, the first detailed study of the Orion Nebula wouldn't be performed until 1659 by Christian Huygens, who also believed himself to be the first person to discover this nebulosity.
In 1715, Edmund Halley published a list of six nebulae. This number steadily increased during the century, with Jean-Philippe de Cheseaux compiling a list of 20 (including eight not previously known) in 1746. From 1751–53, Nicolas Louis de Lacaille cataloged 42 nebulae from the Cape of Good Hope, with most of them being previously unknown. Charles Messier then compiled a catalog of 103 "nebulae" (now called Messier objects, which included what are now known to be galaxies) by 1781; his interest was detecting comets, and these were objects that might be mistaken for them, wasting time.
The number of nebulae was then greatly expanded by the efforts of William Herschel and his sister Caroline Herschel. Their Catalogue of One Thousand New Nebulae and Clusters of Stars was published in 1786. A second catalog of a thousand was published in 1789 and the third and final catalog of 510 appeared in 1802. During much of their work, William Herschel believed that these nebulae were merely unresolved clusters of stars. In 1790, however, he discovered a star surrounded by nebulosity and concluded that this was a true nebulosity, rather than a more distant cluster.
Beginning in 1864, William Huggins examined the spectra of about 70 nebulae. He found that roughly a third of them had the absorption spectra of a gas. The rest showed a continuous spectrum and thus were thought to consist of a mass of stars. A third category was added in 1912 when Vesto Slipher showed that the spectrum of the nebula that surrounded the star Merope matched the spectra of the Pleiades open cluster. Thus the nebula radiates by reflected star light.
In about 1922, following the Great Debate, it had become clear that many "nebulae" were in fact galaxies far from our own.
Slipher and Edwin Hubble continued to collect the spectra from many diffuse nebulae, finding 29 that showed emission spectra and 33 had the continuous spectra of star light. In 1922, Hubble announced that nearly all nebulae are associated with stars, and their illumination comes from star light. He also discovered that the emission spectrum nebulae are nearly always associated with stars having spectral classifications of B1 or hotter (including all O-type main sequence stars), while nebulae with continuous spectra appear with cooler stars. Both Hubble and Henry Norris Russell concluded that the nebulae surrounding the hotter stars are transformed in some manner.


Many nebulae or stars form from the gravitational collapse of gas in the interstellar medium or ISM. As the material collapses under its own weight, massive stars may form in the center, and their ultraviolet radiation ionizes the surrounding gas, making it visible at optical wavelengths. Examples of these types of nebulae are the Rosette Nebula and the Pelican Nebula. The size of these nebulae, known as HII regions, varies depending on the size of the original cloud of gas. New stars are formed in the nebulas. The formed stars are sometimes known as a young, loose cluster.
Some nebulae are formed as the result of supernova explosions, the death throes of massive, short-lived stars. The materials thrown off from the supernova explosion are ionized by the energy and the compact object that it can produce. One of the best examples of this is the Crab Nebula, in Taurus. The supernova event was recorded in the year 1054 and is labelled SN 1054. The compact object that was created after the explosion lies in the center of the Crab Nebula and is a neutron star.
Other nebulae may form as planetary nebulae. This is the final stage of a low-mass star's life, like Earth's Sun. Stars with a mass up to 8–10 solar masses evolve into red giants and slowly lose their outer layers during pulsations in their atmospheres. When a star has lost enough material, its temperature increases and the ultraviolet radiation it emits can ionize the surrounding nebula that it has thrown off. The nebula is almost 97% hydrogen and 3% helium, plus trace amounts of other elements.
[/spoiler][/quote]
pls http://en.m.wikipedia.org/wiki/Nebula copied word for word without source. Inb4 lawsuit.

And welcome to PokeMMO, Buenosan!

Link to comment

[quote name='Mariout' timestamp='1365407148' post='272549']
pls [url="http://en.m.wikipedia.org/wiki/Nebula"]http://en.m.wikipedia.org/wiki/Nebula[/url] copied word for word without source. Inb4 lawsuit.

And welcome to PokeMMO, Buenosan!
[/quote]

Thank you! :)
I love your DP btw, I secretly always knew Slowpokes wanted to take over the world!

Link to comment

[quote name='kloneman' timestamp='1365417007' post='272670']
Welcome spenser irl! Enjoy yourself!
[/quote]

That's not exactly my name but thank you!

[quote name='justicewhale' timestamp='1365417176' post='272675']
Hello and welcome Spenser Buenosan
Hope you enjoy it here and good luck in game! :)
[/quote]

Thank you so much :)
Community here is so nice!

Lets meetup in game sometime!

Link to comment

[quote name='Mischieve' timestamp='1365424773' post='272816']
Hi & Welcome, spencer :3
[/quote]

Hello! :) it's Spenser with an "S" by the way.

[quote name='iSmashbro' timestamp='1365425934' post='272844']
Welcome
[/quote]

Thank you!

[quote name='CipherWeston' timestamp='1365438392' post='273136']
Welcome.
[/quote]

Thank you!

[quote name='Emlee' timestamp='1365440581' post='273194']
Hello and welcome to PokeMMO and the Forums. :)
The forums hold a wealth of knowledge about the game so you're in the right place to learn!
Good luck and see you in game.
[/quote]

I've actually seen you chatting in-game already! :B
In Channel 2!

Link to comment

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
×
×
  • Create New...

Important Information

By using this site, you agree to our Terms of Use and Privacy Policy.